期權期貨構建公式
❶ 期權期貨BS模型中N(d1)怎麼算
black-scholes考慮了期權的時間價值。
1.bs公式的原推導過程應用了偏微分方程和隨機過程中的幾何布朗運動性質(描述標的資產)和Ito公式,你要沒學過隨機和偏微估計只有火星人才能給你講懂。
2.你要是只是要得到那個形式,看一下二叉樹模型,二叉樹模型簡單易懂,自己就可以推導,且二叉樹模型取極限(時間劃分無限細)即為bs公式.
3.你要是真心要理解bs模型公式,我可以推薦一本書,姜禮尚的《期權定價的數學模型和方法》,老老實實從第一章看到第五章,只挑歐式期權看就夠了。
~~~突然想當年老娘為了看懂b-s-m模型把圖書館的書都借了一圈~感慨啊,當然HULL的那本option,future,and other derivatives 是經典中的經典,不過太厚了~~
❷ 期權的結算公式
C: 期權合理價格;
S: 標的證券當前價格;
E: 期權的行權價格;
T:期權行權日日期;
t:使用公式當時的日期;
r:連續復利計的無風險利率 ;
標的證券連續復利回報率的年度波動率。
期權定價公式:布萊克-斯科爾斯公式
參考:http://www.dongao.com/zckjs/cg/201501/216194.shtml
❸ 期權delta標准計算公式與舉例說明如何計算的!
就是下面這個公式:
B-S-M定價公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
(3)期權期貨構建公式擴展閱讀:
計算方法如下:
其中
d1=[ln(S/X)+(r+0.5σ^2)T]/(σ√T)
d2=d1-σ·√T
C-期權初始合理價格
X-期權執行價格
S-所交易金融資產現價
T-期權有效期
r-連續復利計無風險利率
σ-股票連續復利(對數)回報率的年度波動率(標准差)
式子第一行左邊的C(S,t)表示看漲期權的價格,兩個變數S是標的物價格,t是已經經過的時間(單位年),其他都是常量。Delta的定義就是期權價格對標的物價格的一階導數,所以右手邊對S求一階偏導,就只剩下N(d1)了。d1的公式也在上面了,把數字帶進去就好了。N是標准正態分布的累積分布(需要計算器或者查表)。
Delta值(δ),又稱對沖值,指的是衡量標的資產價格變動時,期權價格的變化幅度 。用公式表示:Delta=期權價格變化/標的資產的價格變化。
定義:
所謂Delta,是用以衡量選擇權標的資產變動時,選擇權價格改變的百分比,也就是選擇權的標的價值發生
Delta值變動時,選擇權價值相應也在變動。
公式為:Delta=外匯期權費的變化/外匯期權標的即期匯率的變化
關於Delta值,可以參考以下三個公式:
1.選擇權Delta加權部位=選擇權標的資產市場價值×選擇權之Delta值;
2.選擇權Delta加權部位×各標的之市場風險系數=Delta風險約當金額;
3.Delta加權部位價值=選擇權Delta加權部位價值+現貨避險部位價值。
參考資料:網路-Delta值
❹ 我看《期權期貨及其他衍生產品》看不懂裡面的公式怎麼來的,是不是因為我數學不好
嘿嘿!《期權期貨及其他衍生產品》是我覺得最經典的書!其實『hull』已經講得很清楚了,裡面的問題深入淺出!數學的話建議你看看大學的 《數學分析》《概率論與數理統計》!
❺ 期貨計算題,急!!!!!要公式及過程
100萬*0.9=90萬 3400*300*100=1020萬
1020/90=11.3張
❻ 期貨期權題目,需要詳細計算過程。
Put option: 5.302
Delta: -0.373
沒啥好詳細計算的啊,,就帶進BS Put Option的公式慢慢算啊
P(S,t)=N(-d2)Ke^-r(T-t)-N(-d1)*S
K=150
S=153
r=0.0512
N(.) 查正態分布表
Delta=dV/dS
❼ 期貨定價和期權定價的公式比較
教科書上多了去了
❽ 期貨及期權投資實務的計算,求具體過程。
直接用BS公式:P=2.3759
❾ 期權的平價公式如何推導
期權平價公式:C+Ke^(-rT)=P+S。
假設標的證券在期權存續期間沒有收益,認購-認沽期權平價關系即:認購期權價格與行權價的現值之和等於認沽期權的價格加上標的證券現價(c+PV(X)=p+S)。認購期權價格C與行權價K的現值之和等於認沽期權的價格P加上標的證券現價S=Ke^(-rT):K乘以e的-rT次方,也就是K的現值。e的-rT次方是連續復利的折現系數。也可用exp(-rT)表示貼現因子。
根據無套利原則推導:構造兩個投資組合。
1.看漲期權C,行權價K,距離到期時間T。現金賬戶Ke^(-rT),利率r,期權到期時恰好變成行權價K。
2.看跌期權P,行權價K,距離到期時間T。標的物股票,現價S。看到期時這兩個投資組合的情況。
3.股價St大於K:投資組合1,行使看漲期權C,花掉現金賬戶K,買入標的物股票,股價為St。投資組合2,放棄行使看跌期權,持有股票,股價為St。
4.股價St小於K:投資組合1,放棄行使看漲期權,持有現金K。投資組合2,行使看跌期權,賣出標的物股票,得到現金K
5.股價等於K:兩個期權都不行權,投資組合1現金K,投資組合2股票價格等於K。從上面的討論我們可以看到,無論股價如何變化,到期時兩個投資組合的價值一定相等,所以他們的現值也一定相等。根據無套利原則,兩個價值相等的投資組合價格一定相等。所以我們可以得到C+Ke^(-rT)=P+S。換一種思路理解:C- P = S- Ke^(-rT)
(9)期權期貨構建公式擴展閱讀
結算類型
1.股票結算方式
在股票交易中,如果投資者希望買入一定數量的股票,其就必須立即支付全部費用才能獲得股票,一旦買入股票後出現股票價格上漲,那麼投資者也必須賣出股票才能獲得價差利潤。因此,其結算要求是:交易要立即以現金支付才能達成,而損益必須在交易結束後不再持有標的物時才能實現。在期權市場上,股票類結算方法與此非常類似。
股票類結算方法的基本要求是:期權費必須立即以現金支付,並且只要不對沖部位,就無法實現盈虧。這種結算方法主要用在股票期權和股票指數期權交易中,期權合約的結算與標的資產的結算程序大致相同。
2.期貨類結算方法
期貨類結算方法與期貨市場的結算方法十分相似,也採用每日結算制度。期貨市場通常採用這樣的結算方式。
不過,由於採用期貨類結算方法的風險較大,因此許多交易所只是在期貨期權交易中採用了期貨類結算方法,而在股票期權和股指期權交易中仍採用股票類結算方法。這樣,期權交易的結算程序可以因期權及其標的資產的結算程序相同而大大簡化。
參考資料來源:網路-期權