期權期貨怎麼定價制度
Ⅰ 依據遠期,期貨,互換,期權等定價方法來描述金融衍生品的定價規律
在探討金融衍生產品定價思路的優缺點之前,讓我們先來緬懷一下30年來金融衍生品發展的里程碑式事件:
1973年,Black、Scholes和Merton分別提出了期權定價的Black-Scholes公式,這一模型解決了「或有剩餘索取權」的定價疑難,為衍生品市場的迅速發展掃清了最大的障礙,Scholes和Merton也因此獲得1997年的諾貝爾經濟學獎。
1985年,McConnell和Schwartz提出了LYONs(本質是可轉換債券)的一個定價模型,為對沖基金的廣闊發展提供了大量可供套利的沃土。(可轉換債券是對沖基金最常交易的產品)
1989年,Schwartz提出了抵押貸款證券化產品的定價模型,成為資產證券化飛速發展的起點,後來出現的CDO、CDO2、CDOn、CMO等產品成為此次次貸危機的金融核彈。
90年代之後出現了引發金融危機的另一顆威力更大的「小男孩」核彈——信用違約掉期(CDS),2000年,Hull和White的定價模型更是便利了這種金融衍生產品的急速增長。
金融危機的反思
金融衍生產品的出現和發展本應是為了控制、分散、轉移風險的金融工具,奈何最後成為一場危機的導火索,值得人人深思。隨著衍生產品的不斷開發,越來越多的數學工具被加以應用,包括偏微分方程、概率統計、隨機過程、鞅論、測度論等;越來越多的計算機演算法被加以借鑒,如,牛頓迭代、蒙特卡洛模擬等。
這一切似乎讓定量分析師們(Quants)將金融工程變成了「工程」,而不再更多的追究其「金融」本質。設計者一開始就不假思索的隨機遊走(random walk)和無套利均衡,基於這一基礎開始辛勤的添磚加瓦,修建出各種美輪美奐的金融衍生產品。!!!!!!!!此為金融衍生品的定價規律即基本規律是復制 即使用市場上已有產品組合達到相同的風險收益 組合的價格就是衍生品價格!!!!!!!!!!!!!
作為一個看客,我不認為此次次貸危機和金融危機是定量分析師們有意所為,我相信寬客們的素質也絕對不會這樣。但客觀講,定量分析師們不得不負客觀上的責任,即在一個不堅實的地基上修建金融衍生品的精妙房屋。這不堅實的地基便是隨機遊走和無套利均衡。金融資產價格的變化多端使得我們簡單的認為其價格服從隨機遊走,但殊不知,股票的幾何布朗運動,利率、波動率的均值回復運動並不能完整的刻畫資產價格的走勢,特別是對極端情況的刻畫。
而所謂無套利均衡,是指如果幾個市場之間存在無風險的套利機會,套利力量將會推動幾個市場重建均衡,但它僅僅是一個局部均衡,三個市場之間的無套利均衡並不意味著其定出來的價值是真實的、穩定的,可能三個市場均是300%的泡沫,它仍然是無套利均衡的,但不是一般均衡的,這樣的價格是會破裂的,最好的佐證便是這次次貸危機。
未來的衍生品定價技術如何發展?這是一個可以再獲諾貝爾獎的命題。是繼續技術化的「工程」道路,不假思索的無套利定價?還是向一般均衡靠近,兼顧到其標的金融資產的內生價值?當然毫無疑問,前者易,後者難。前者只需要簡單的把標的資產價格作為一個外生變數,通過對相關資產價格比較進行定價,而不考慮行為主體的偏好和效用函數。後者需要考慮標的資產價值的合理性,在給衍生品定價的同時,考慮宏觀經濟變數的理性預期均衡。一代奇才Black晚年致力於解決它,但不幸早逝,或許一般均衡是「上帝的均衡」,可望不可及。
但此次金融危機的深刻教訓,讓我們不得不重新思考,定價是否應該盡可能的考量到外生的宏觀因素,向一般均衡靠近,盡管它永遠不能達到。畢竟這個真實的世界不是完全隨機遊走。事實上,金融危機後,很多學者已經開始在向這個方向靠近。(作者系匯豐集團中國首席經濟學家)
Ⅱ 期權費一般怎麼收取為什麼說炒期權要比炒期貨風
期權費就是期權的價格,由於期權提高靈活的選擇權,對購買者十分有利,同時也意外著對賣出者不利,因而賣出者必須制定合理的期權費才能保證自己不會虧損。在國外成熟的期權市場上,期權的流動性很高,有專門的定價方法,常用的有black-scholes公式。
期貨的作用主要在於價值發現,真正以實物交割的比例很低;而期權的作用主要在於保值和投機,交割的可能性高於期貨,並受到金融市場波動的影響,因而風險要大於期貨。
Ⅲ 期權實值虛值平值行權價怎麼定價的是根據現價定價的嗎
根據期權合約行權價格與標的期貨合約價格之間的關系,可將期權合約分為平值期權、實值期權和虛值期權。
平值期權是指行權價格等於標的期貨合約價格的期權合約。實值期權是指看漲期權(看跌期權)的行權價格低於(高於)標的期貨合約價格的期權合約。虛值期權是指看漲期權(看跌期權)的行權價格高於(低於)標的期貨合約價格的期權合約。
Ⅳ 期貨與期權在基本交易制度上的區別是什麼
期權:向買方或者賣方支付一定費用後,擁有在未來交割某種指定商品的權利。擁有者可以執行或者不執行,這叫做行權。期權可以 以期貨作為標的物。
期貨的買房或者賣方必須實行現貨交割或者對沖平倉。
Ⅳ 期權交易和期貨交易的保證金制度有什麼不同請說明,謝謝!
期權買賣時,價格是你需要繳納的期權費,如果你行權,還要繳納買賣股票的費用。比如期權價格是5元/股看漲期權,行權價格是30元/股,到期時股票價格50元/股,你打算行權而不是只吃差價,那麼,你還有繳納30元/股的資金。
期貨的保證金是貨款的一部分,如果你選擇交割(假設你有權進行交割),你只需要補足差價就可以了。比如10%的保證金,交割時,只要補足90%。
Ⅵ 期權投資當中期權定價是如何存在的,它的意義如何
期權定價存在的原因:
期權費的定價其實是一種對賭,有投資者預計未來價格漲,有投資者認為未來價格跌,一個賣出期權,一個買入期權。不過,因為期權費的存在,投資者其實賭的是一個價格波動區間。
期權定價意義:
期權定價在期權市場是很重要的一塊,做期權的期貨公司會採用相應的模型去制定最終的價格。期權費的制定其實已經計算過了未來價格波動的可能性,因此:雖然賣出期權的一方理論風險無限大,但實際上是經過不斷計算才決定出售期權的。並非所有期權適合購買。
Ⅶ 股指期貨是怎樣定價的
對股票指數期貨進行理論上的定價,是投資者做出買入或賣出合約決策的重要依據。股指期貨實際上可以看作是一種證券的價格,而這種證券就是這上指數所涵蓋的股票所構成的投資組合。同其它金融工具的定價一樣,股票指數期貨合約的定價在不同的條件下也會出現較大的差異。但是有一個基本原則是不變的,即由於市場套利活動的存在,期貨的真實價格應該與理論價格保持一致,至少在趨勢上是這產的。為說明股票指數期貨合約的定價原理,我們假設投資者既進行股票指數期貨交易,同時又進行股票現貨交易,並假定:
(1)投資者首先構造出一個與股市指數完全一致的投資組合(即二者在組合比例、股指的「價值」與股票組合的市值方面都完全一致);
(2)投資者可以在金融市場上很方便地借款用於投資;
(3)賣出一份股指期貨合約;
(4)持有股票組合至股指期貨合約的到期日,再將所收到的所有股息用於投資;
(5)在股指期貨合約交割日立即全部賣出股票組合;
(6)對股指期貨合約進行現金結算。
Ⅷ 期貨定價和期權定價的公式比較
教科書上多了去了
Ⅸ 期權如何定價
在期權運用中,大部分投資者無需知道模型的計算,不用拆解定價模型,只需要了解每個模型需要哪些因素、有什麼差異、適用范圍和優缺點,然後通過在期權計算器上輸入變數即可得到期權的價格。期權行情軟體也一般會自帶期權計算器,直接給出理論價格。但是,缺點是投資者不知道這些理論價格採用的是哪個模型,也不知道輸入的無風險利率以及價格波動水平等變數是多少。不過有些期權行情軟體可以由投資者自行去設定無風險利率和波動率水平參數,另外,網上也有各種期權計算器。
在分析定價模型前,先了解一下它的原理和假設條件。
期權的定價模型源自「隨機漫步理論」,也就是認為標的資產的價格走勢是獨立的,今天的價格和昨天的價格沒有任何關系,即價格是無法預測的。另外,市場也需要是有效市場。在這個假設下,一連串的走勢產生「正態分布」,即價格都集中在平均值周圍,而且距離平均值越遠,頻率便越會下跌。
舉個例子,這種分布非常類似小孩玩的落球游戲。把球放在上方,一路下滑,最後落到底部。小球跌落在障礙物左邊和右邊的概率都是50%,自由滑落的過程形成隨機走勢,最後跌落到底部。這些球填補底部後,容易形成一個類似正態的分布。
正態分布的定義比較復雜,但我們只需了解它是對稱分布在平均值兩邊的、鍾形的曲線,並且可以找出價格最終落在各個點的概率。在所有的潛在可能中,有68.26%的可能性是分布在正負第一個標准差范圍內,有13.6%的可能性是分布在正負第二個標准差范圍內,有2.2%的可能性是分布在正負第三個標准差范圍內。
期權的定價基礎就是根據這個特徵為基礎的,即期權的模型是概率模型,計算的是以正態分布為假設基礎的理論價格。但實際標的資產的價格走勢並不一定是正態分布。比如,可能會出現像圖片中的各種不同的狀態。
應用標准偏差原理的布林帶指標,雖然理論上價格出現在三個標准偏差范圍外的概率很低,只有0.3%(1000個交易日K線中只出現3次),但實際上,出現的概率遠超過0.3%。因為期貨價格或者說股票價格不完全是標准正態分布。兩邊的概率分布有別於標准正態分布,可能更分散,也可能更集中,表現為不同的峰度。比如股票價格的分布更偏向於對數正態分布。那麼在計算期權價格的時候,有些模型會對峰度進行調整,更符合實際。
另外,像股票存在成長價值,存在平均值上移的過程,而且大幅上漲的概率比大幅下跌的概率大,那麼它的價格向上的斜率比向下的斜率大,所以平均值兩邊的百分比比例會不一樣。為了更貼近實際,有些期權定價模型也會把偏度的調整計入定價。