布朗運動期貨期權
1. 關於期權股票的布朗運動隨機性
嚇,這么復雜么?隨機性怎能用公式死算,貓不會指標,更不會公式,但索羅斯胡嘀咕的人性的貪婪與恐懼是沒法估計滴,貓信這話,所以隨機性就沒法算,大慨是這原因吧。
2. 依據遠期,期貨,互換,期權等定價方法來描述金融衍生品的定價規律
在探討金融衍生產品定價思路的優缺點之前,讓我們先來緬懷一下30年來金融衍生品發展的里程碑式事件:
1973年,Black、Scholes和Merton分別提出了期權定價的Black-Scholes公式,這一模型解決了「或有剩餘索取權」的定價疑難,為衍生品市場的迅速發展掃清了最大的障礙,Scholes和Merton也因此獲得1997年的諾貝爾經濟學獎。
1985年,McConnell和Schwartz提出了LYONs(本質是可轉換債券)的一個定價模型,為對沖基金的廣闊發展提供了大量可供套利的沃土。(可轉換債券是對沖基金最常交易的產品)
1989年,Schwartz提出了抵押貸款證券化產品的定價模型,成為資產證券化飛速發展的起點,後來出現的CDO、CDO2、CDOn、CMO等產品成為此次次貸危機的金融核彈。
90年代之後出現了引發金融危機的另一顆威力更大的「小男孩」核彈——信用違約掉期(CDS),2000年,Hull和White的定價模型更是便利了這種金融衍生產品的急速增長。
金融危機的反思
金融衍生產品的出現和發展本應是為了控制、分散、轉移風險的金融工具,奈何最後成為一場危機的導火索,值得人人深思。隨著衍生產品的不斷開發,越來越多的數學工具被加以應用,包括偏微分方程、概率統計、隨機過程、鞅論、測度論等;越來越多的計算機演算法被加以借鑒,如,牛頓迭代、蒙特卡洛模擬等。
這一切似乎讓定量分析師們(Quants)將金融工程變成了「工程」,而不再更多的追究其「金融」本質。設計者一開始就不假思索的隨機遊走(random walk)和無套利均衡,基於這一基礎開始辛勤的添磚加瓦,修建出各種美輪美奐的金融衍生產品。!!!!!!!!此為金融衍生品的定價規律即基本規律是復制 即使用市場上已有產品組合達到相同的風險收益 組合的價格就是衍生品價格!!!!!!!!!!!!!
作為一個看客,我不認為此次次貸危機和金融危機是定量分析師們有意所為,我相信寬客們的素質也絕對不會這樣。但客觀講,定量分析師們不得不負客觀上的責任,即在一個不堅實的地基上修建金融衍生品的精妙房屋。這不堅實的地基便是隨機遊走和無套利均衡。金融資產價格的變化多端使得我們簡單的認為其價格服從隨機遊走,但殊不知,股票的幾何布朗運動,利率、波動率的均值回復運動並不能完整的刻畫資產價格的走勢,特別是對極端情況的刻畫。
而所謂無套利均衡,是指如果幾個市場之間存在無風險的套利機會,套利力量將會推動幾個市場重建均衡,但它僅僅是一個局部均衡,三個市場之間的無套利均衡並不意味著其定出來的價值是真實的、穩定的,可能三個市場均是300%的泡沫,它仍然是無套利均衡的,但不是一般均衡的,這樣的價格是會破裂的,最好的佐證便是這次次貸危機。
未來的衍生品定價技術如何發展?這是一個可以再獲諾貝爾獎的命題。是繼續技術化的「工程」道路,不假思索的無套利定價?還是向一般均衡靠近,兼顧到其標的金融資產的內生價值?當然毫無疑問,前者易,後者難。前者只需要簡單的把標的資產價格作為一個外生變數,通過對相關資產價格比較進行定價,而不考慮行為主體的偏好和效用函數。後者需要考慮標的資產價值的合理性,在給衍生品定價的同時,考慮宏觀經濟變數的理性預期均衡。一代奇才Black晚年致力於解決它,但不幸早逝,或許一般均衡是「上帝的均衡」,可望不可及。
但此次金融危機的深刻教訓,讓我們不得不重新思考,定價是否應該盡可能的考量到外生的宏觀因素,向一般均衡靠近,盡管它永遠不能達到。畢竟這個真實的世界不是完全隨機遊走。事實上,金融危機後,很多學者已經開始在向這個方向靠近。(作者系匯豐集團中國首席經濟學家)
3. 期權期貨BS模型中N(d1)怎麼算
black-scholes考慮了期權的時間價值。
1.bs公式的原推導過程應用了偏微分方程和隨機過程中的幾何布朗運動性質(描述標的資產)和Ito公式,你要沒學過隨機和偏微估計只有火星人才能給你講懂。
2.你要是只是要得到那個形式,看一下二叉樹模型,二叉樹模型簡單易懂,自己就可以推導,且二叉樹模型取極限(時間劃分無限細)即為bs公式.
3.你要是真心要理解bs模型公式,我可以推薦一本書,姜禮尚的《期權定價的數學模型和方法》,老老實實從第一章看到第五章,只挑歐式期權看就夠了。
~~~突然想當年老娘為了看懂b-s-m模型把圖書館的書都借了一圈~感慨啊,當然HULL的那本option,future,and other derivatives 是經典中的經典,不過太厚了~~
4. 在Black-Scholes 公式發現之前,人們是怎樣給期權定價的
black-scholes考慮了期權的時間價值。 1.bs公式的原推導過程應用了偏微分方程和隨機過程中的幾何布朗運動性質(描述標的資產)和Ito公式,你要沒學過隨機和偏微估計只有火星人才能給你講懂。 2.你要是只是要得到那個形式,看一下二叉樹模型,二叉樹模型簡單易懂,自己就可以推導,且二叉樹模型取極限(時間劃分無限細)即為bs公式. 3.你要是真心要理解bs模型公式,我可以推薦一本書,姜禮尚的《期權定價的數學模型和方法》,老老實實從第一章看到第五章,只挑歐式期權看就夠了。 ~~~突然想當年老娘為了看懂b-s-m模型把圖書館的書都借了一圈~感慨啊,當然HULL的那本option,future,and other derivatives 是經典中的經典,不過太厚了~~
5. 」布朗運動反映了微粒中分子的無規則運動」這句話對嗎
對啊,實際上是液體的運動,但是反映了微粒中分子的無規則運動
選擇題經常考的
6. 求關於分數布朗運動和期權定價方面的畢業論文
我也是些這方面的
7. 布朗運動反映了什麼是不是微粒中分子的無規則運動拜託了各位 謝謝
隨機遊走是不是也稱馬爾科夫過程?布朗運動是不是也稱維納過程? 維納過程是馬爾科夫隨機過程的特殊形式 對這個問題我也不了解,但可以提供一點線索,赫爾《期權,期貨和其他衍生產品》的第十章有關於這方面的介紹,希望對你能有幫助
8. 有關布朗運動和期權定價的問題,望大神解答!
布朗運動是將看起來連成一片的液體,在高倍顯微鏡下看其實是由許許多多分子組成的。液體分子不停地做無規則的運動,不斷地隨機撞擊懸浮微粒。當懸浮的微粒足夠小的時候,由於受到的來自各個方向的液體分子的撞擊作用是不平衡的。在某一瞬間,微粒在另一個方向受到的撞擊作用超強的時候,致使微粒又向其它方向運動,這樣,就引起了微粒的無規則的運動就是布朗運動。
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
9. 求經濟B-S期權定價模型的原理還有計算方法
假定股票價格服從幾何布朗運動,即dSt/St=μdt+σdWt. St為t時點股票價格,μ為漂移量,σ為波動率,Wt為標准布朗運動。使用伊藤公式。然後用無套利原理求得BSPDE。