能源期貨期權定價模型
1. Black-Scholes期權定價模型(Black-Scholes Option Pricing Model)
選擇標準是什麼?
你覺得σ是多少就按照多少來。
2. Black-Scholes期權定價模型的介紹
Black-Scholes-Merton期權定價模型(Black-Scholes-Merton Option Pricing Model),即布萊克—斯克爾斯-默頓期權定價模型。1997年10月10日,第二十九屆諾貝爾經濟學獎授予了兩位美國學者,哈佛商學院教授羅伯特·默頓(Robert Merton)和斯坦福大學教授邁倫·斯克爾斯(Myron Scholes),同時肯定了布萊克的傑出貢獻。他們創立和發展的布萊克—斯克爾斯期權定價模型(Black-Scholes Option Pricing Model)為包括股票、債券、貨幣、商品在內的新興衍生金融市場的各種以市價價格變動定價的衍生金融工具的合理定價奠定了基礎。斯克爾斯與他的同事、已故數學家費雪·布萊克(Fischer Black)在70年代初合作研究出了一個期權定價的復雜公式。與此同時,默頓也發現了同樣的公式及許多其它有關期權的有用結論。結果,兩篇論文幾乎同時在不同刊物上發表。然而,默頓最初並沒有獲得與另外兩人同樣的威信,布萊克和斯科爾斯的名字卻永遠和模型聯系在了一起。所以,布萊克—斯克爾斯定價模型亦可稱為布萊克—斯克爾斯—默頓定價模型。默頓擴展了原模型的內涵,使之同樣運用於許多其它形式的金融交易。瑞典皇家科學協會(The Royal Swedish Academyof Sciencese)贊譽他們在期權定價方面的研究成果是今後25年經濟科學中的最傑出貢獻。
3. 布萊克斯科爾斯期權定價模型如何理解
1、金融資產收益率服從對數正態分布;
2、在期權有效期內,無風險利率和金融資產收益變數是恆定的;
3、市場無摩擦,即不存在稅收和交易成本;
4、金融資產在期權有效期內無紅利及其它所得(該假設後被放棄);
5、該期權是歐式期權,即在期權到期前不可實施。
4. 期權價值評估方法中的布萊克-斯科爾斯期權定價模型的七個假設是什麼
布萊克-斯科爾斯期權定價模型的七個假設:
1.在期權壽命期內,買方期權標的股票不發放股利,也不做其他分配;
2.股票或期權的買賣沒有交易成本;
3.短期的無風險利率是已知的,並且在期權壽命期內保持不變;
4.任何證券購買者能以短期的無風險利率借得任何數量的資金;
5.允許賣空,賣空者將立即得到所賣空股票當天價格的資金;
6.看漲期權只能在到期日執行;
7.所有證券交易都是連續發生的,股票價格隨機遊走。
5. 期貨後續培訓的期權定價模型的答案是什麼
有兩種,一種是美式的,一種是歐式的定價方式.按目前國內即將上市的期貨品種,採用是美式期權.
有二叉樹模型和B--S模型
6. Black-Scholes期權定價模型的分紅方法
B-S-M模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。
(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期內存在其它所得,依該法一一減去。從而將B-S模型變型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)
(二)存在連續紅利支付是指某股票以一已知分紅率(設為δ)支付不間斷連續紅利,假如某公司股票年分紅率δ為0.04,該股票現值為164,從而該年可望得紅利164×004=6.56。值得注意的是,該紅利並非分4季支付每季164;事實上,它是隨美元的極小單位連續不斷的再投資而自然增長的,一年累積成為6.56。因為股價在全年是不斷波動的,實際紅利也是變化的,但分紅率是固定的。因此,該模型並不要求紅利已知或固定,它只要求紅利按股票價格的支付比例固定。
在此紅利現值為:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在連續紅利支付的期權定價公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)
7. 簡述幾個期權定價模型
上證50etf期權 T+0雙向交易模式。
具體到底如何交易?
很多人的疑問是,看了很多介紹還是沒有直觀的感覺,不知道該具體該如何操作。說下案例【認購期權】:
比如目前50ETF價格是2.5元/份。你認為上證50指數在未來1個月內會上漲,於是選擇購買一個月後到期的50ETF認購期權。假設買入合約單位為10000份、行權價格為2.5元、次月到期的50ETF認購期權一張。而當前期權的權利金為0.1元,需要花0.1×10000=1000元的權利金。
在合約到期後,有權利以2.5元的價格買入10000份50ETF。也有權利不買。
假如一個月後,50ETF漲至2.8元/份,那麼你肯定是會行使該權利的,以2.5元的價格買入,並在後一交易日賣出,可以獲利約(2.8-2.5)×10000=3000元,減去權利金1000元,可獲得利潤2000元。如果上證50漲的更多,當然就獲利更多。
相反,如果1個月後50ETF下跌,只有2.3元/份,那麼你可以放棄購買的權利,則虧損權利金1000元。也就是不論上證50跌到什麼程度,最多隻損失1000元。