bs期货期权定价模型
1. 期权BS定价
1、D
2\A
3\C
http://bbs.chinaacc.com/forum-2-31/topic-2238773.html
2. 期权期货BS模型中N(d1)怎么算
实际上B-S模型中的N(d1)和N(d2)实际上指的是正态分布下的置信值,d1={ln(S/X)+[r+(σ^2)/2]*(T-t)}/[σ*(T-t)^0.5],d2=d1-σ*(T-t)^0.5。利用相关数据先计算出d1和d2的值,然后利用正态分布表,找出对应的d1和d2所对应的置信值。
3. 什么是期权定价的BS公式
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。
B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
4. 为什么b-s定价模型不适用于美式期权
因为BS模型是以行权日价格作为一个重要参数的,而与欧式期权确定在某一天行权不同,美式期权是可以在一段时间以内行权的,其行权期限较为灵活。
5. 期权期货BS模型中N(d1)怎么算
black-scholes考虑了期权的时间价值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~
6. 用B-S模型定价,结果期权价格计算得出了负数这是怎么回事
我在做报告也遇到这个问题可能是你的收益率不是对数正态分布,不能使用B-S模型(收益率满足对数正态分布是B-S模型的假设前提之一)。你可以换着用二叉树或者其他定价模型再算一下。希望能帮到你。
7. bs期权定价模型,是否考虑了期权的时间价值。另外跪求bs模型公式讲解推导过程,要地球人都能看得懂的那种。
black-scholes考虑了期权的时间价值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~
8. 求详细解释下面的股票期权激励计划中的BS模型公式
Φ()表示正态分布变量的累积概率分布函数
9. BS期权定价公式
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。
B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。