当前位置:首页 » 期权期货 » 耦合隐马尔可夫期货现货

耦合隐马尔可夫期货现货

发布时间: 2021-05-08 15:05:39

1. 关于隐马尔可夫的问题

正解:1班35号
或6班班花

2. 隐马尔科夫是无监督还是有监督的

网络 非监督学习里包括了隐马尔可夫

3. 隐马尔可夫模型受哪些因素的影响

优点:该方法对过程的状态预测效果良好,可考虑用于生产现场危险状态的预测 缺点:不适宜用于系统中长期预测

4. 隐马尔可夫模型 为什么是生成模型

不过我想说个更通俗易懂的例子。 还是用最经典的例子隐马尔可夫(HMM)好讲,简单易懂不好讲,掷骰子。我认为 @者也的回答没什么错误。假设我手里有三个不同的骰子

5. 如何用简单易懂的例子解释隐马尔可夫模型

隐马尔可夫(HMM)好讲,简单易懂不好讲。我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子。
还是用最经典的例子,掷骰子。假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。

假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。
不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4
这串数字叫做可见量链。但是在隐马尔可夫模型中,我们不仅仅有这么一串可见量链,还有一串隐含量链。在这个例子里,这串隐含变量链就是你用的骰子的序列。比如,隐含量链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8
一般来说,HMM中说到的马尔可夫链其实是指隐含量链,因为隐含量(骰子)之间存在转换概率的。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率,或者转换概率分布的。比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。这样就是一个新的HMM。
同样的,尽管可见量之间没有转换概率,但是隐含量和可见量之间有一个概率叫做emission probability(发射概率?没见过中文怎么说的。。。)。对于我们的例子来说,六面骰(D6)产生1的emission probability是1/6。产生2,3,4,5,6的概率也都是1/6。我们同样可以对emission probability进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。

6. 什么是隐形马尔可夫过程

http://ke..com/view/163499.htm 参考

7. 隐马尔可夫模型的基本概述

一种HMM可以呈现为最简单的动态贝叶斯网络。隐马尔可夫模型背后的数学是由LEBaum和他的同事开发的。它与早期由RuslanL.Stratonovich提出的最优非线性滤波问题息息相关,他是第一个提出前后过程这个概念的。
在简单的马尔可夫模型(如马尔可夫链),所述状态是直接可见的观察者,因此状态转移概率是唯一的参数。在隐马尔可夫模型中,状态是不直接可见的,但输出依赖于该状态下,是可见的。每个状态通过可能的输出记号有了可能的概率分布。因此,通过一个HMM产生标记序列提供了有关状态的一些序列的信息。注意,“隐藏”指的是,该模型经其传递的状态序列,而不是模型的参数;即使这些参数是精确已知的,我们仍把该模型称为一个“隐藏”的马尔可夫模型。隐马尔可夫模型以它在时间上的模式识别所知,如语音,手写,手势识别,词类的标记,乐谱,局部放电和生物信息学应用。
隐马尔可夫模型可以被认为是一个概括的混合模型中的隐藏变量(或变量),它控制的混合成分被选择为每个观察,通过马尔可夫过程而不是相互独立相关。最近,隐马尔可夫模型已推广到两两马尔可夫模型和三重态马尔可夫模型,允许更复杂的数据结构的考虑和非平稳数据建模。

8. 隐马尔可夫模型的基本算法

针对以下三个问题,人们提出了相应的算法
*1 评估问题: 前向算法
*2 解码问题: Viterbi算法
*3 学习问题: Baum-Welch算法(向前向后算法)

9. 隐马尔可夫模型的基本问题

1. 评估问题。
给定观测序列 O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率,进而可对该HMM做出相关评估。例如,已有一些模型参数各异的HMM,给定观测序列O=O1O2O3…Ot,我们想知道哪个HMM模型最可能生成该观测序列。通常我们利用forward算法分别计算每个HMM产生给定观测序列O的概率,然后从中选出最优的HMM模型。
这类评估的问题的一个经典例子是语音识别。在描述语言识别的隐马尔科夫模型中,每个单词生成一个对应的HMM,每个观测序列由一个单词的语音构成,单词的识别是通过评估进而选出最有可能产生观测序列所代表的读音的HMM而实现的。
2.解码问题
给定观测序列 O=O1O2O3…Ot 和模型参数λ=(A,B,π),怎样寻找某种意义上最优的隐状态序列。在这类问题中,我们感兴趣的是马尔科夫模型中隐含状态,这些状态不能直接观测但却更具有价值,通常利用Viterbi算法来寻找。
这类问题的一个实际例子是中文分词,即把一个句子如何划分其构成才合适。例如,句子“发展中国家”是划分成“发展-中-国家”,还是“发展-中国-家”。这个问题可以用隐马尔科夫模型来解决。句子的分词方法可以看成是隐含状态,而句子则可以看成是给定的可观测状态,从而通过建HMM来寻找出最可能正确的分词方法。
3. 学习问题。
即HMM的模型参数λ=(A,B,π)未知,如何调整这些参数以使观测序列O=O1O2O3…Ot的概率尽可能的大。通常使用Baum-Welch算法以及Reversed Viterbi算法解决。
怎样调整模型参数λ=(A,B,π),使观测序列 O=O1O2O3…Ot的概率最大?

热点内容
普洱墨江哈尼族自治县晚籼稻期货开户 发布:2021-12-16 12:35:43 浏览:396
阿坝小金县橡胶期货开户 发布:2021-12-16 12:35:40 浏览:908
楚雄大姚县豆一期货开户 发布:2021-12-16 12:34:02 浏览:736
做期货能在网上开户吗 发布:2021-12-16 12:32:22 浏览:591
安庆宜秀区早籼稻期货开户 发布:2021-12-16 12:32:22 浏览:377
正确的原油期货开户 发布:2021-12-16 12:29:41 浏览:39
达州市纤维板期货开户 发布:2021-12-16 12:25:11 浏览:310
呼伦贝尔新巴尔虎左旗白银期货开户 发布:2021-12-16 12:25:07 浏览:883
上海外盘期货哪里开户 发布:2021-12-16 12:24:10 浏览:448
香港日发期货开户网站 发布:2021-12-16 12:24:09 浏览:780