量化投资期货模型
1. 什么是量化投资
数量化投资、程序化交易、算法交易、自动化交易以及高频交易都是数量化交易的特定方式, 其描述内容的侧重点各有不同。数量化交易应用IT技术和金融工程模型偶那个帮助投资者指定投资策略、减少执行成本、进行套利和风险对冲。数据、速度、风险管理是数量化交易系统建设中的关键问题。期货市场的数量化自动交易模型正逐步由投资者编制自用,演变为有一定规模的投资咨询顾问组成的专业团队参与。
程序化交易,也可称之为系统交易或算法交易,设计人员将市场常用之技术指标,利用电脑软件将其写入系统中,结合市场历史数据,分析和组合各种指标建立数学模型,将交易策略系统化。当交易策略的条件满足时,程序化系统自动发出多空讯号,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能抓住交易策略,进而赚取波段获利。程序化交易的操作方式不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。
程序化交易又是一种个性化交易,每个投资者(或机构)都可以根据自己的投资经验和智慧,编写自己的交易模型,进行电脑自动交易。交易模型是交易思想的凝练和实际化,正确的交易思想在严格的操作纪律实行下将获得良好、稳定的投资收益,而通过交易模型正是将正确的交易思想与严格的操作纪律很好地结合在一起,帮助人们获取良好、稳定的投资收益。程序化交易在投资实战中不仅可以提高下单速度,更可以帮助投资者避免受到情绪波动的影响,消除交易时人性的恐惧、贪婪、迟疑及赌性等情绪,实现理性投资。
设计出色的程序化系统可以确保广为流传的交易成功三项基本原则的顺利实施:顺应市场趋势、控制亏损交易、做足盈利交易。
总而言之,模型策略的出色设计、资金的有效风险控制、行情交易软件的稳定可靠、数据的及时流畅以及下单速度的快捷,组成了优秀的程序化交易系统,它是量化投资的一种具体实现途径。
2. 量化投资,如何量化呢
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货
商品期货套利盈利的逻辑原理是基于以下几个方面 :
(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。
(2)由于价格的波动性,价格差价经常出现不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。
它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
3. 什么是量化投资
定义:是指通过数理统计分析,选择那些未来回报可能会超越基准的证券进行投资,以期获取超越指数基金收益的基金。
释义:区别于普通基金,量化基金主要采用量化投资策略来进行投资组合管理。总的来说,量化基金采用的策略包括:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易、资产配置等。对于量化基金的产品设计,虽然量化基金一般都是采用多因素模型对股票进行分析和筛选,但不同的量化基金的侧重点是不一样的,也就是包括投资思路、观察角度、分析方法在内都是不同的。
在我国证券市场,基本面研究占主流地位,然而随着证券市场的不断发展、证券数目的增加、衍生品的出现等,基金要想战胜指数的难度也越来越大,量化投资则开始发挥越来越重要的作用,因此我国也涌现出了大批量化基金。
4. 如何开发量化投资模型
4.如何进行量化投资
一个量化投资的交易系统主要包括三个部分,阿尔法模型、风险模型和交易成本模型。
阿尔法模型旨在预测宽客所考虑金融产品的未来趋势;
风险模型旨在帮助宽客投资不太能带来收益但会造成损失的敞口规模;
交易成本模型用于帮助确定从目前的投资组合到新的投资组合的交易成本。
目前对于量化交易的研究重点大都集中在对阿尔法模型的研究上。
阿尔法模型
阿尔法模型是量化交易系统的第一个重要组成部分,主要是为了寻找盈利机会。
阿尔法是希腊字母α的音译,常用于量化表述投资者的盈利能力或投资者得到的与市场波动无关的回报。
阿尔法模型分为:
趋势形、回复型、技术情绪型、价值型/收益型、成长型和品质型
趋势型和均值回复型交易策略都依赖价格数据;纯技术情绪型的策略比较少见通常都只作为一个辅助因子;而价值型/收益型、成长型和品质型策略都基于基本面数据
趋势跟随策略
趋势跟随策略是基于以下基本的假定:在一定时间内市场通常朝着同一方向变化,据此对市场趋势做出判断就可以作为制定交易策略的依据。常见于期货市场,最常用移动平均线交叉来定义趋势。
均值回复策略
均值回复策略的基本理论认为,价格围绕其价值中枢而上下波动,判断出这个中枢以及波动的方向便足以捕捉到交易机会。统计套利是用的最多的均值回复策略,认为价格出现背离类似股票的价值终究会缩小到合理的区间范围。
技术情绪型策略
这一类策略没有明确的经济理论支撑,主要通过追踪投资者情绪相关指标来判断预期回报,如交易价格、交易量以及波动性指标等。比如观察期权市场的认沽认购量和隐含波动率做现货的择时,再者就是高频交易通过限价指令簿的形态来判断近期市场情绪。
价值型/收益型策略
价值型策略主要用于股票交易。这类策略认为市场倾向于高估高风险资产的风险,而低估低风险资产的风险。因此,在适当的时间买入高风险资产和卖出低风险资产,就可以获得收益。常用的指标有PE(市盈率)、PB(市净率)等,常应用于股票多空。
成长型策略
成长型策略试图通过对所考虑资产以往的增长水平进而对未来的走势进行预测。他认为价格上涨通常都是存在趋势的,价格上涨最快的产品通常比同类产品更具有优势,他要求投资者能尽早判断公司的股价处于增长期,从而捕捉到公司的股价未来更大的上涨幅度。宏观上常见于外汇市场,例如持有经济迅速增长的国家的外汇,这些国家的利率比经济增长缓慢或处于复苏期的经济体要高;股票市场通常用EPS等指标度量。
品质型策略
这类策略的支持者认为,在其他条件相同的条件下最好买入或持有高品质的产品而做空或减少持有低品质的资产。这类策略比较看重资金的安全,受宏观市场影响比较大,常用的指标有杠杆比率、收入波动比、管理团队水平和欺诈风险。
不管是什么类型的策略最终受益都体现在交易中关于买卖时机的把握和持有头寸选择的技巧。
https://uqer.io/community/list 这个社区里面有很多关于量化的策略,也有很多牛人,可以和他们多讨论讨论的。
5. 什么是量化投资——数量化投资与程序化交易
2010-11-02 14:49:32 作者: 来源:永安期货 浏览次数:0 量化投资,简单地说,就是利用数学、统计学、信息技术的量化投资方法来管理投资组合。数量化投资、程序化交易、算法交易、自动化交易以及高频交易都是数量化交易的特定方式, 其描述内容的侧重点各有不同。数量化交易应用IT技术和金融工程模型偶那个帮助投资者指定投资策略、减少执行成本、进行套利和风险对冲。数据、速度、风险管理是数量化交易系统建设中的关键问题。期货市场的数量化自动交易模型正逐步由投资者编制自用,演变为有一定规模的投资咨询顾问组成的专业团队参与。 程序化交易,也可称之为系统交易或算法交易,设计人员将市场常用之技术指标,利用电脑软件将其写入系统中,结合市场历史数据,分析和组合各种指标建立数学模型,将交易策略系统化。当交易策略的条件满足时,程序化系统自动发出多空讯号,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能抓住交易策略,进而赚取波段获利。程序化交易的操作方式不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。 程序化交易又是一种个性化交易,每个投资者(或机构)都可以根据自己的投资经验和智慧,编写自己的交易模型,进行电脑自动交易。交易模型是交易思想的凝练和实际化,正确的交易思想在严格的操作纪律实行下将获得良好、稳定的投资收益,而通过交易模型正是将正确的交易思想与严格的操作纪律很好地结合在一起,帮助人们获取良好、稳定的投资收益。程序化交易在投资实战中不仅可以提高下单速度,更可以帮助投资者避免受到情绪波动的影响,消除交易时人性的恐惧、贪婪、迟疑及赌性等情绪,实现理性投资。设计出色的程序化系统可以确保广为流传的交易成功三项基本原则的顺利实施:顺应市场趋势、控制亏损交易、做足盈利交易。总而言之,模型策略的出色设计、资金的有效风险控制、行情交易软件的稳定可靠、数据的及时流畅以及下单速度的快捷,组成了优秀的程序化交易系统,它是量化投资的一种具体实现途径。上传:钱文
6. 期货程序化交易中的基本面可以量化吗 能不能把基本面量化成交易模型
基本面交易很大程度上也是靠经验,要靠多年的积累,因为基本面交易也包含了很多因素,包括供求平衡关系、市场结构、微观因素、宏观因素等等有很多因素。这个交易经验或者说交易人,这种交易经验可复制性又非常差,就是想带一个成熟的交易员要经历很长的时间,如果靠基本面交易,特别是靠商品期货,一个人所带的资金就很有限,到一定规模我就很难以再扩大。
在这种市场情况下,要想开展一部分程序化交易或者量化投资,一定要有所区别,因为现在市场上由于期货公司或者现在期货行业发展的现状,很多年轻人快速进入到量化投资这个领域,对基本面分析或者说交易经验比较少的情况下,做出来的交易模型大部分是纯数学化的模型。实际上量化做模型的背后有大量的数据采集,这个数据采集也包含了很多宏观、微观方面的一些数据,将这些数据整理、加工进行人工智能的分析。
7. 我研究出一套量化投资模型,试验结果都不错,我想如何能够掘到第一桶金
去华夏基金量化投资部面试吧 你会遇到知音的
8. 量化交易都有哪些主要的策略模型
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。 量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
9. 期货开户 程序化交易 量化投资 交易策略 量化模型 开拓者 金字塔 CTP 交易策略 量化模型
文华
1上手快,简单易学,通用的脚本语言(类似于传统的股票软件指标语言)。提供基本自由度的功能实现。
2可进行历史数据回测。
3策略可加密。
4期货市场投资客户。
5刚开始接触程序化交易的投资客户。
6熟悉通用炒股软件指标编写的客户。
·开拓者
7功能强大,编程语言比较专业(类Pascal),可方便的编写自己的函数。提供高自由度的功能实现。
8可进行历史数据回测。
9策略可加密。
10期货市场投资客户。
11有一定编程能力支持的投资客户。
12交易策略比较复杂的投资客户。
·达钱+MC
13源于国外,经久考验,功能强大。
14全球标准的支持策略语言,EasyLanguage。
15编译及回测速度效能高,集成优异的策略回测和优化功能,提供详细、完整的策略绩效报告。
16支持自定义任一周期线图显示及策略回测
17支持Excel插件、完整数据管理接口(DDE,GlobalServer,……)
18期货市场投资客户。
19有一定编程能力支持的投资客户。
20交易策略比较复杂的投资客户。
21需要使用Excel软件辅助程序化交易的客户。
·东海潜龙
22编程语言专业,实现功能非常灵活。提供完全自由的功能实现。
23可进行历史数据回测。集群服务器模式,稳定性高。
24直连交易所,交易速度很快。
25可同时进行股票投资和期货投资,连接国内股票、期货六大交易。
26可定制交易界面。提供接口,可连接外部策略软件。
27股票市场、期货市场专业投资客户和机构投资者。
28对速度和稳定性有更高要求的客户(比如高交易频率的客户)。
29交易策略复杂,定制化要求程度高。
·金字塔
30国内独家支持图表程式化交易、后台程式化交易、高频交易、趋势线预警交易等多种自动交易模式。
31支持一键下单,图表下单等多种手工下单模式。
32程式化交易模型编写及操作兼容国内主流分析软件。
33支持套利、多帐户交易及动态止赢止损功能。
34支持板块指数、自定义数据等横向统计功能。
35基于OFFICE架构下的VBA二次开发功能。
10. 什么是期货量化交易与程序化交易一样的吗
量化投资理论是借助现代统计学和数学的方法,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。
量化从一开始也不是作为定性的对立面而提出的方法,它是将定性分析中的技术分析策略用模型固化,替代过程中可以用电脑进行的部分并将其效用极大优化。量化交易策略几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
程序化交易将具体的交易时机,仓位,止损止盈,获利标准编写进交易程序中,也可能独立于程序外。程序化只是交易执行的一种方式。