期货行情回测
⑴ 期货期权交流回测绩效这么好的策略靠谱吗
贴图啊! 贴回测数据啊!
⑵ 聚宽有期货回测的计划吗
掘金有期货的回测功能
⑶ 股票期货等交易策略,为什么要进行历史回测
说高端点就是为了个大数据,这样能根据历史推算成功率。
说白了,恕我直言那就是骗自己,没卵用的东西。不同的行情不同的策略,不同的逻辑。你交易策略历史胜率80%都没卵用,可能这10次里面8成功都是在牛市背景下,另外2次失败是熊市背景下,等到你用的时候是熊市了对不起失败了那就是100%了,80%胜率?不存在的!
这种东西就是最傻了,除非真坚持用个10几20年去轮回一波牛熊,不然这胜率根本没用没有说服力
⑷ python量化哪个平台可以回测模拟实盘还不要钱
Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。
⑸ 如何看待量化交易的回测
美股研究社指出:不同风格的策略对于回测的要求是不同的,比如对于多因子选股或者趋势策略等,需要注意的几点是:
1. 区分好样本内数据和样本外数据,这个和机器学习很类似,样本内数据用于训练,样本外数据用于校验。这样做的目的是为了避免过拟合陷阱。
2. 收益的分布,看看你回测后所有交易的收益分布,看看你的收益来源是少数的几次大的收益还是来源多次的小的收益。来源于大的收益,你的收益波动性就很大,实盘往往会达不到你的效果。
3. 参数的稳定性。如果你某个参数过敏感,随便调整下就对收益影响很大,那你实盘的情况和模拟盘也有很大可能会有出入。
这类策略严格来说,避免了一些常见的坑,还是比较容易做到回测和实盘类似的。
京东量化最新推出了一些通达信的技术指标还不错,你们可以去看一下,应该能学到好多东西。
⑹ 量化交易测试历史数据,程序化交易历史回测数据哪里找
大富翁数据中心有股票,期货等等tick等,可用于量化交易测试,程序化交易历史回测
⑺ 量化策略一般用什么平台回测分别有什么优劣势
盈时量化策略回测平台,不会编程也能玩转量化。
盈时“策略机器人”集策略智能生成、策略评估、筛选优化、批量生成等功能于一体的交互式策略生成平台。平台以计算机智能生成算法为核心,使用了机器学习、模式识别、统计学、可视化技术等人工智能技术,包含策略构建模块、混编计算模块、策略绩效优化模块等组件,在策略优化方面使用了高效的遗传编程与NSGA-II等算法,进而充分利用CPU多核心性能,实现多进程同步高效生成策略。
语言:Python
适用人群:期货投资者(有无编程基础都可)
数据库:期货
回测用时:需要排队分钟记
支持的功能:支持将策略使用在交易开拓者的平台,属于实盘交易。策略给出建议,但需要自己手动确定进行买卖。
自动生成策略原理与简介:通过设置参数,运用机器学习的方法,一键生成源码策略。
备注:国内首个利用深度学习的人工智能量化平台,不懂编程也能做量化。
盈时,专注于为客户提供高品质的量化交易技术咨询服务和领先的量化交易产品,是一家从事金融数据分析、金融软件开发、程序化交易算法与交易策略研究等业务的科技公司。
⑻ 国内哪家股票/期货量化交易平台支持tick级回测
国信tradestation支持股票、期货、期权交易,你说的量化回测都可以
⑼ 国内有什么做股票日内交易策略回测的软件或平台吗
⑽ 期货量化交易软件哪个好
推荐掘金量化交易平台,支持期货期权股票两融的量化交易,数据丰富,tick级回测、逼真的仿真环境和合规的实盘交易通道以及丰富的风控系统。