当前位置:首页 » 市场行情 » 贝叶斯神经网络预测期货价格

贝叶斯神经网络预测期货价格

发布时间: 2021-05-01 07:38:52

⑴ 贝叶斯预测的计算实例

根据The SAS System for Windows 9.0所编程序,对美国出口额 (单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。

美国出口额的预测, 预测模型的初始信 息为m0=304,Co=72,V=0.Ol,δ=0.8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。

通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程:
表示年份
见表3给出了1980-2006年的预测信息。

⑵ 如何理解贝叶斯估计

贝叶斯理论
1.贝叶斯法则
机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。
最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。

2.先验概率和后验概率
用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。

3.贝叶斯公式
贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法
p(h|D)=P(D|H)*P(H)/P(D)
P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。

4.极大后验假设
学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP)
确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下:
h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H)
最后一步,去掉了P(D),因为它是不依赖于h的常量。

5.极大似然假设
在某些情况下,可假定H中每个假设有相同的先验概率,这样式子可以进一步简化,只需考虑P(D|h)来寻找极大可能假设。
h_ml = argmax p(D|h) h属于集合H
P(D|h)常被称为给定h时数据D的似然度,而使P(D|h)最大的假设被称为极大似然假设。

6.举例
一个医疗诊断问题
有两个可选的假设:病人有癌症、病人无癌症
可用数据来自化验结果:正+和负-
有先验知识:在所有人口中,患病率是0.008
对确实有病的患者的化验准确率为98%,对确实无病的患者的化验准确率为97%
总结如下
P(cancer)=0.008, P(cancer)=0.992
P(+|cancer)=0.98, P(-|cancer)=0.02
P(+|cancer)=0.03, P(-|cancer)=0.97
问题:假定有一个新病人,化验结果为正,是否应将病人断定为有癌症?求后验概率P(cancer|+)和P(cancer|+)
因此极大后验假设计算如下:
P(+|cancer)P(cancer)=0.0078
P(+|cancer)P(cancer)=0.0298
hMAP=cancer
确切的后验概率可将上面的结果归一化以使它们的和为1
P(canner|+)=0.0078/(0.0078+0.0298)=0.21
P(cancer|-)=0.79
贝叶斯推理的结果很大程度上依赖于先验概率,另外不是完全接受或拒绝假设,只是在观察到较多的数据后增大或减小了假设的可能性。

⑶ 贝叶斯预测模型用哪个软件进行计算

贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。通过实证分析的方法,将贝叶斯预测模型与普通回归预测模型的预测结果进行比较,结果表明贝叶斯预测模型具有明显的优越性。
一项相关的技术,名为HiddenMarkov模型,让概率能够预测次序。例如,一个演讲识别应用知道经常在“q”之后的字母是“u”。除了这些,该软件还能够计算“Qagga”(一种灭绝了的斑马的名称)一词出现的概率。概率技术已经内置在微软的产品中了。OutlookMobileManage是一个能够决定什么时候往移动设备上发出一封内勤的电子邮的软件。它是从Priorities发展而来的,Priorities是微软在1998年公布的一个实验系统。WindowsXP的故障检修引擎也依赖于概率计算。随着该公司的NotificationPlatform开始内置在产品中,在未来的一年中会有更多的应用软件发布,微软的Horvitz这样表示。NotificationPlatform的一个重要组成部分名为Coordinate,它从个人日历,键盘,传感器照相机以及其他来源收集数据,来了解某个人生活和习惯。收集的数据可能包括到达的时间,工作时间和午餐的时间长度,哪种类型的电话或电子邮件被保存,而哪些信息被删除,在某天的特定时间里键盘被使用的频率,等等。 这些数据可以被用来管理信息流和使用者收到的其他信息。例如,如果一位经理在下午2:40发送了一封电子邮件给一名员工,Coordinate可以检查该员工的日历程序,然后发现他在下午2:00有一个会议。该程序还可以扫描关于该员工习惯的数据,然后发现该员工通常会在有会议之后大约一个小时才重新使用键盘。该程序可能还能够发现该名员工通常会在5分钟之内回复该经理的电子邮件。根据上面这些数据,该软件能够估计出该员工可能至少在20分钟之内不可能回复该电子邮件,该软件可能会把这条信息发送到该员工的手提电话上。同时,该软件可能会决定不把别人的电子邮件也转发出去。
“我们正在平衡以打搅你为代价所获得信息的价值,”Horvitz表示。使用这个软件,他坚持道,“能够让更多的人跟上事情的发展,而不被大量的信息所淹没。”Horvitz补充道,隐私和对于这些功能的用户控制是确定的。呼叫者并不知道为什么一条信息可能会被优先或推迟处理。微软还把Bayes模型使用在其他的一些产品上,包括DeepListener以及Quartet(语音激活),SmartOOF以及TimeWave(联系控制)。消费者多媒体软件也获益非浅,Horvitz表示。Bayes技术不仅仅被应用在PC领域。在UniversityofRochester,研究人员发现一个人的步伐可以在一步前发生改变。虽然这种改变对于人类来说太过于细微,一台和电脑连接在一起的照相机可以捕捉并跟踪这种动作。如果行走异常出现,计算机就能够发出警报。
一个实验用的安全照相机采用了同样的原理:大部分到达机场的人都会在停车以后直接走向目的地,所以如果有人停了车,然后走向另一辆车就不太正常,因此就可能引发警报。今年秋天一个创建Bayes模型和技术信息的基本引擎将会公布在Intel的开发者网站上。
虽然该技术听起来简单易懂,关于它的计算可能却比较慢。Horvitz回忆说他是斯坦佛20世纪80年代仅有的两个概率和人工智能的毕业生之一。其他所有的人学习的是逻辑系统,采用的是“ifandthen”的模式和世界互动。“概率论那时候不流行,”Horvitz表示。但是当逻辑系统不能够预测所有的意外情况时,潮流发生了转变。很多研究人员开始承认人类的决策过程比原来想象的要神秘的多。“在人工智能领域存在着文化偏见,”Koller表示。“人们现在承认他们并不知道他们的脑子是如何工作的。”
即便在他的时代,Bayes发现他自己置身于主流之外。他于1702年出生于伦敦,后来他成为了一名Presbyterianminister。虽然他看到了自己的两篇论文被发表了,他的理论很有效,但是《》却一直到他死后的第三年,也就是1764年才被发表。他的王室成员身份一直是个谜,直到最近几年,新发现的一些信件表明他私下和英格兰其他一些思想家看法一致。“就我所知,他从来没有写下贝叶斯定理,”Howard表示。神学家RichardPrice和法国的数学家PierreSimonLaPlace成为了早期的支持者。该理论和后来GeorgeBoole,布尔数学之父,的理论背道而驰。GeorgeBoole的理论是基于代数逻辑的,并最终导致了二进制系统的诞生。也是皇室成员之一的Boole死于1864年。
虽然概率的重要性不容置疑,可是关于它的应用的争论却没有停止过。批评者周期性地声称Bayes模型依赖于主观的数据,而让人类去判断答案是否正确。而概率论模型没有完全解决在人类思维过程中存在的细微差别的问题。“儿童如何学习现在还不是很清楚,”IBM研究部门的科学和软件副总裁AlfredSpector这样表示。他计划把统计学方法和逻辑系统在他的CombinationHypothesis之中结合起来。“我最初相信是统计学的范畴,但是从某方面说,你将会发现不仅仅是统计学的问题。”但是,很有可能概率论是基础。“这是个基础,”Horvitz表示。“它被忽略了一段时间,但是它是推理的基础。”

⑷ 如何用朴素贝叶斯模型对数据进行预测

朴素:特征条件独立
贝叶斯:基于贝叶斯定理
根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是

p(y|x)=p(x|y)p(y)p(x)
在这里,x是一个特征向量,将设x维度为M。

⑸ 贝叶斯神经网络和神经网络算法是什么关系

贝叶斯是机器学习的算法,一般不用于神经网络。神经网络主要分DNN、RNN、CNN、GAN等几种。

热点内容
普洱墨江哈尼族自治县晚籼稻期货开户 发布:2021-12-16 12:35:43 浏览:396
阿坝小金县橡胶期货开户 发布:2021-12-16 12:35:40 浏览:908
楚雄大姚县豆一期货开户 发布:2021-12-16 12:34:02 浏览:736
做期货能在网上开户吗 发布:2021-12-16 12:32:22 浏览:591
安庆宜秀区早籼稻期货开户 发布:2021-12-16 12:32:22 浏览:377
正确的原油期货开户 发布:2021-12-16 12:29:41 浏览:39
达州市纤维板期货开户 发布:2021-12-16 12:25:11 浏览:310
呼伦贝尔新巴尔虎左旗白银期货开户 发布:2021-12-16 12:25:07 浏览:883
上海外盘期货哪里开户 发布:2021-12-16 12:24:10 浏览:448
香港日发期货开户网站 发布:2021-12-16 12:24:09 浏览:780