商品期貨量化python
① 用python做量化交易要學多久
你要做連話交易的話,可以學兩年的時間就可以學會了,如果想要學的更細的話,學學三年。
② 想用python量化金融,需要掌握python哪些
掘=金=量=化 有針對新手使用Python進行策略開發的文檔指引,對於還沒有基礎的新手可以去看下
③ 期貨如何量化
期貨量化首先要學編程,有很多軟體是可以幫到你的,但是也必須會編程基礎。
文華財經金字塔,還有Python。都可以做期貨量化。
④ 有哪些好的量化交易平台
天字一號量化交易系統可以了解下,
經過了市場實盤的驗證。期貨日報舉辦的FOF實盤資金大賽中,天字一號系統的用戶在第一屆排名前三
期貨權威網站七禾網的實盤資金曲線展示中,我們的用戶7年資金盈利率5.68倍。最大回撤為38%。
⑤ 通達信什麼時候支持python量化交易
1、一個強大的N維數組對象Array;
2、比較成熟的(廣播)函數庫;
3、用於整合C/C++和Fortran代碼的工具包;
4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
⑥ python量化哪個平台可以回測模擬實盤還不要錢
Python量化投資框架:回測+模擬+實盤
Python量化投資 模擬交易 平台 1. 股票量化投資框架體系 1.1 回測 實盤交易前,必須對量化交易策略進行回測和模擬,以確定策略是否有效,並進行改進和優化。作為一般人而言,你能想到的,一般都有人做過了。回測框架也如此。當前小白看到的主要有如下五個回測框架: Zipline :事件驅動框架,國外很流行。缺陷是不適合國內市場。 PyAlgoTrade : 事件驅動框架,最新更新日期為16年8月17號。支持國內市場,應用python 2.7開發,最大的bug在於不支持3.5的版本,以及不支持強大的pandas。 pybacktest :以處理向量數據的方式進行回測,最新更新日期為2個月前,更新不穩定。 TradingWithPython:基於pybacktest,進行重構。參考資料較少。 ultra-finance:在github的項目兩年前就停止更新了,最新的項目在谷歌平台,無奈打不開網址,感興趣的話,請自行查看吧。 RQAlpha:事件驅動框架,適合A股市場,自帶日線數據。是米筐的回測開源框架,相對而言,個人更喜歡這個平台。 2 模擬 模擬交易,同樣是實盤交易前的重要一步。以防止類似於當前某券商的事件,半小時之內虧損上億,對整個股市都產生了惡劣影響。模擬交易,重點考慮的是程序的交易邏輯是否可靠無誤,數據傳輸的各種情況是否都考慮到。 當下,個人看到的,喜歡用的開源平台是雪球模擬交易,其次是wind提供的模擬交易介面。像優礦、米筐和聚寬提供的,由於只能在線上平台測試,不甚自由,並無太多感覺。 雪球模擬交易:在後續實盤交易模塊,再進行重點介紹,主要應用的是一個開源的easytrader系列。 Wind模擬交易:若沒有機構版的話,可以考慮應用學生免費版。具體模擬交易介面可參看如下鏈接:http://www.dajiangzhang.com/document 3 實盤 實盤,無疑是我們的終極目標。股票程序化交易,已經被限制。但對於萬能的我們而言,總有解決的辦法。當下最多的是破解券商網頁版的交易介面,或者說應用爬蟲爬去操作。對我而言,比較傾向於食燈鬼的easytrader系列的開源平台。對於機構用戶而言,由於資金量較大,出於安全性和可靠性的考慮,並不建議應用。 easytrader系列當前主要有三個組成部分: easytrader:提供券商華泰/傭金寶/銀河/廣發/雪球的基金、股票自動程序化交易,量化交易組件 easyquotation : 實時獲取新浪 / Leverfun 的免費股票以及 level2 十檔行情 / 集思路的分級基金行情 easyhistory : 用於獲取維護股票的歷史數據 easyquant : 股票量化框架,支持行情獲取以及交易 2. 期貨量化投資框架體系 一直待在私募或者券商,做的是股票相關的內容,對期貨這塊不甚熟悉。就根據自己所了解的,簡單總結一下。 2.1 回測 回測,貌似並沒有非常流行的開源框架。可能的原因有二:期貨相對股票而言,門檻較高,更多是機構交易,開源較少; 去年至今對期貨監管控制比較嚴,至今未放開,只能做些CTA的策略,另許多人興致泱泱吧。 就個人理解而言,可能wind的是一個相對合適的選擇。 2.2 模擬 + 實盤 vn.py是國內最為流行的一個開源平台。起源於國內私募的自主交易系統,2015年初啟動時只是單純的交易API介面的Python封裝。隨著業內關注度的上升和社區不斷的貢獻,目前已經一步步成長為一套全面的交易程序開發框架。如官網所說,該框架側重的是交易模塊,回測模塊並未支持。 能力有限,如果對相關框架感興趣的話,就詳看相關的鏈接吧。個人期望的是以RQAlpha為主搭建回測框架,以雪球或wind為主搭建模擬框架,用easy系列進行交易。
⑦ 現在有什麼比較好的 商品期貨量化投資軟體
metafuture不錯啊。
metaFutures利用了量化投資的先進思想,通過對熵理論,統計套利和風險管理等先進理論的應用,基於對歷史大盤數據的分析上,為用戶提供了一款具有三重風險控制的程序化自動交易智能策略軟體。本系統的程序化自動交易集套利和資金管理兩大功效一身,具有「強大的風險控制性」、「投資策略一貫性」、「操作客觀性」、「下達指令准確性」以及「用戶溝通及時性」、「使用舒適性」等特點,更有Chicago獨立自主研發的實時聊天以及資金管理等功能更使得metaFutures成為一款功能創新、多樣、強大且人性化的軟體。
⑧ 什麼是期貨量化交易與程序化交易一樣的嗎
量化投資理論是藉助現代統計學和數學的方法,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,用數量模型驗證及固化這些規律和策略,然後嚴格執行已固化的策略來指導投資,以求獲得可持續的、穩定且高於平均的超額回報。
量化從一開始也不是作為定性的對立面而提出的方法,它是將定性分析中的技術分析策略用模型固化,替代過程中可以用電腦進行的部分並將其效用極大優化。量化交易策略幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
程序化交易將具體的交易時機,倉位,止損止盈,獲利標准編寫進交易程序中,也可能獨立於程序外。程序化只是交易執行的一種方式。
⑨ python回測系統 模擬回測 最簡單量化回測系統有哪些支持期貨和股票
github上有一個jdhc簡單回測 是用python寫的比較簡單,需要設置些參數。