時間序列預測期貨價格
㈠ 時間序列預測需要多少歷史數據
時間序列是按時間順序的一組數字序列。時間序列分析就是利用這組數列,應用數理統計方法加以處理,以預測未來事物的發展。時間序列分析是定量預測方法之一,它的基本原理:一是承認事物發展的延續性。應用過去數據,就能推測事物的發展趨勢。二是考慮到事物發展的隨機性。任何事物發展都可能受偶然因素影響,為此要利用統計分析中加權平均法對歷史數據進行處理。該方法方法簡單易行,便於掌握,但准確性差,一般只適用於短期預測。
㈡ 寫大豆期貨價格的時間序列分析,想從期貨與現貨這個角度入手,但是不知道怎麼提取數據,
首先你要去收集數據啊,看看vip文獻吧
我經常幫別人做類似的數據分析的
㈢ 基於時間序列分析的股票價格短期預測,這個開題報告怎麼弄,收費的就不用麻煩了
你好,希望我們可以幫你。相關資料在知網,萬維網能查到資料。基於時間序列分析的股票價格短期預測開題報告是我們特長,我們的服務特色:支持支付寶交易,保證你的資金安全。3種服務方式,文章多重審核,保證文章質量。附送抄襲檢測報告,讓你用得放心。修改不限次數,再刁難的老師也能過。
㈣ 關於時間序列預測,預測多少點數合適的問題
擬合結果好,是因為有實際的數據在不斷修正這些方法的偏差。而預測的時候就會有問題,就像你說的,後50個數據預測的會不準。你們導師的意思是對的,我們總感覺樣本數據越多,預測結果越准,其實這是不對的。預測和數據多少無關(最少也得5個以上吧),關鍵是你預測的數據和基年的數據的時間差值,差值越大,偏差越大,因為中間沒有實際的數據修正。預測近期的,結果都很好,遠期的大部分不準確。看你數據這么多,你可以嘗試分步預測,比如每隔10個點,取一個數據,然後就可以預測基年後的第10個數據,依次類推。
㈤ 有人會用時間序列預測嗎,就是我現在知道2000-2011年的數據,想要預測2012-2015年的數據,具體怎麼操作啊
那要看你要用什麼模型進行估計了,對數據的自相關性進行檢驗,如果含有單位根的話先進行差分再檢驗。沒有單位根後根據樣本的ACF和PACF進行建模。最簡單的就是arma模型,得到殘差看是否符合正態分布或者學生-t分布之類的,看殘差是否存在序列相關性。如果有在進行條件異方差模型。
㈥ 時間序列預測法的步驟
利用時間序列資料求出長期趨勢、季節變動和不規則變動的數學模型後,就可以利用它來預測未來的長期趨勢值T和季節變動值s,在可能的情況下預測不規則變動值I。然後用以下模式計算出未來的時間序列的預測值Y:
加法模式T+S+I=Y
乘法模式T×S×I=Y
如果不規則變動的預測值難以求得,就只求長期趨勢和季節變動的預測值,以兩者相乘之積或相加之和為時間序列的預測值。如果經濟現象本身沒有季節變動或不需預測分季分月的資料,則長期趨勢的預測值就是時間序列的預測值,即T=Y。但要注意這個預測值只反映現象未來的發展趨勢,即使很准確的趨勢線在按時間順序的觀察方面所起的作用,本質上也只是一個平均數的作用,實際值將圍繞著它上下波動。
㈦ 請問用三次指數平滑時間序列預測價格有什麼優缺點是只能預測短時間的嗎要預測長期的價格用什麼辦法好
其實也不是預測,只表示股價呈現指數平均線移動的方向,但是股價隨時反轉而平均線滯後反應,多次指數平滑沒有太多意義,當然,這跟放長周期的指數平滑還是不同,多次指數平滑的結果是均線非常平滑,而又能體現短期趨勢,要預測長期價格就用長期移動平均線吧,這是就不必用指數移動平均線了,多次平滑也沒必要
㈧ 什麼是時間序列預測法
一種歷史資料延伸預測,也稱歷史引伸預測法。是以時間數列 所能反映的社會經濟現象的發展過程和規律性,進行引伸外推,預測其發展趨勢的方法。 時間序列,也叫時間數列、歷史復數或動態數列 。它是將某種統計指標的 數值,按時間先後順序排到所形成的數列。時間序列預測法就是通過編制和分析時間序列,根據時間序列所反映出來的發展過程、方向和趨勢,進行類推或延伸,藉以預測下一段時間或以後若干年內可能達到的水平。其內容包括:收集與整理某種社會現象的歷史資料;對這些資料進行檢查鑒別,排成數列;分析時間數列,從中尋找該社會現象隨時間變化而變化的規律,得出一定的模式;以此模式去預測該社會現象將來的情況。 時間序列預測法的步驟 第一步 收集歷史資料,加以整理,編成時間序列,並根據時間序列繪成統計圖 。時間序列分析通常是把各種可能發生作用的因素進行分類,傳統的分類方法是按各種因素的特點或影響效果分為四大類:(1)長期趨勢;(2)季節變動;(3)循環變動;(4)不規則變動。 第二步 分析時間序列。時間序列中的每一時期的數值都是由許許多多不同的因素同時發生作用後的綜合結果。 第三步 求時間序列的長期趨勢(T)季節變動(s)和不規則變動(I)的值,並選定近似的數學模式來代表它們。對於數學模式中的諸未知參數,使用合適的技術方法求出其值。 第四步 利用時間序列資料求出長期趨勢、季節變動和不規則變動的數學模型後,就可以利用它來預測未來的長期趨勢 值T和季節變動值s,在可能的情況下預測不規則變動值I。然後用以下模式計算出未來的時間序列的預測值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不規則變動的預測值難以求得,就只求長期趨勢 和季節變動的預測值,以兩者相乘之積或相加之和為時間序列的預測值。如果經濟現象本身沒有季節變動或不需預測分季分月的資料,則長期趨勢的預測值就是時間序列的預測值,即T=Y。但要注意這個預測值只反映現象未來的發展趨勢,即使很准確的趨勢線 在按時間順序的觀察方面所起的作用,本質上也只是一個平均數 的作用,實際值將圍繞著它上下波動。 時間序列分析基本特徵[1] 1.時間序列分析法是根據過去的變化趨勢預測未來的發展,它的前提是假定事物的過去延續到未來。 時間序列分析,正是根據客觀事物發展的連續規律性,運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。事物的過去會延續到未來這個假設前提包含兩層含義:一是不會發生突然的跳躍變化,是以相對小的步伐前進;二是過去和當前的現象可能表明現在和將來活動的發展變化趨向。這就決定了在一般情況下,時間序列分析法對於短、近期預測比較顯著,但如延伸到更遠的將來,就會出現很大的局限性,導致預測值偏離實際較大而使決策失誤。 2.時間序列數據變動存在著規律性與不規律性 時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型。 (1)趨勢性:某個變數隨著時間進展或自變數變化,呈現一種比較緩慢而長期的持續上升、下降、停留的同性質變動趨向,但變動幅度可能不相等。 (2)周期性:某因素由於外部影響隨著自然季節的交替出現高峰與低谷的規律。 (3)隨機性:個別為隨機變動,整體呈統計規律。 (4)綜合性:實際變化情況是幾種變動的疊加或組合。預測時設法過濾除去不規則變動,突出反映趨勢性和周期性變動。 時間序列預測法的分類 時間序列預測法可用於短期預測、中期預測 和長期預測 。根據對資料分析方法的不同,又可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法 等。 簡單序時平均數法 也稱算術平均法 。即把若干歷史時期的統計數值作為觀察值,求出算術平均數作為下期預測值。這種方法基於下列假設:「過去這樣,今後也將這樣」,把近期和遠期數據等同化和平均化,因此只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。 加權序時平均數法 就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。 簡單移動平均法 就是相繼移動計算若干時期的算術平均數作為下期預測值。 加權移動平均法 即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。 上述幾種方法雖然簡便,能迅速求出預測值,但由於沒有考慮整個社會經濟發展的新動向和其他因素的影響,所以准確性較差。應根據新的情況,對預測結果作必要的修正。 指數平滑法 即根據歷史資料的上期實際數和預測值,用指數加權的辦法進行預測。此法實質是由內加權移動平均法演變而來的一種方法,優點是只要有上期實際數和上期預測值,就可計算下期的預測值,這樣可以節省很多數據和處理數據的時間,減少數據的存儲量,方法簡便。是國外廣泛使用的一種短期預測 方法。 季節趨勢預測法 根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。推算季節性指數可採用不同的方法,常用的方法有季(月)別平均法和移動平均法兩種:a.季(月)別平均法。就是把各年度的數值分季(或月)加以平均,除以各年季(或月)的總平均數,得出各季(月)指數。這種方法可以用來分析生產、銷售 、原材料儲備、預計資金周轉 需要量等方面的經濟事物的季節性變動;b.移動平均法。即應用移動平均數計算比例求典型季節指數。 市場壽命周期預測法 就是對產品市場壽命周期的分析研究。例如對處於成長期的產品預測其銷售量,最常用的一種方法就是根據統計資料,按時間序列畫成曲線圖 ,再將曲線外延,即得到未來銷售發展趨勢。最簡單的外延方法是直線外延法,適用於對耐用消費品 的預測。
㈨ 時間序列預測方法有哪些分類,分別適合使用的情況是
時間序列預測方法根據對資料分析方法的不同,可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。
1、簡單序時平均數法只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。
2、加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。
3、簡單移動平均法適用於近期期預測。當產品需求既不快速增長也不快速下降,且不存在季節性因素時,移動平均法能有效地消除預測中的隨機波動。
4、加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。
5、指數平滑法即根用於中短期經濟發展趨勢預測,所有預測方法中,指數平滑是用得最多的一種。
6、季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。
7、市場壽命周期預測法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。
(9)時間序列預測期貨價格擴展閱讀:
時間序列預測法的特徵
1、時間序列分析法是根據過去的變化趨勢預測未來的發展,前提是假定事物的過去延續到未來。運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。不會發生突然的跳躍變化,是以相對小的步伐前進;過去和當前的現象,可能表明現在和將來活動的發展變化趨向。
2.時間序列數據變動存在著規律性與不規律性
時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型:趨勢性、周期性、隨機性、綜合性。
㈩ 求高手幫忙,時間序列分析預測法一般用於那些方面,有什麼優缺點
時間序列是指同一變數按事件發生的先後順序排列起來的一組觀察值或記錄值。構成時間序列的要素有兩個:其一是時間,其二是與時間相對應的變數水平。實際數據的時間序列能夠展示研究對象在一定時期內的發展變化趨勢與規律,因而可以從時間序列中找出變數變化的特徵、趨勢以及發展規律,從而對變數的未來變化進行有效地預測。
時間序列的變動形態一般分為四種:長期趨勢變動,季節變動,循環變動,不規則變動。
時間序列預測法的應用:
系統描述
根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述。
系統分析
當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理。
預測未來
一般用ARMA模型擬合時間序列,預測該時間序列未來值。
決策和控制
根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
時間序列預測法的基本特點是:
假定事物的過去趨勢會延伸到未來;
預測所依據的數據具有不規則性;
撇開了市場發展之間的因果關系。
找的好辛苦!!!